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ABSTRACT: The development of artificial enzymes aims at
expanding the scope of biocatalysis. Over recent years, artificial
metalloenzymes based on the insertion of homogeneous catalysts
in biomolecules have received an increasing amount of attention.
Rational or pseudorational design of these composites is a
challenging task because of the complexity of the identification of
efficient complementarities among the cofactor, the substrate, and
the biological partner. Molecular modeling represents an
interesting alternative to help in this task. However, little
attention has been paid to this field so far. In this manuscript,
we aim at reviewing our efforts in developing strategies efficient to computationally drive the design of artificial metalloenzymes.
From protein−ligand dockings to multiscale approaches, we intend to demonstrate that modeling could be useful at the different
steps of the design. This Perspective ultimately aims at providing computational chemists with illustration of the applications of
their tools for artificial metalloenzymes and convincing enzyme designers of the capabilities, qualitative and quantitative, of
computational methodologies.
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■ INTRODUCTION

Biocatalysis consists of the industrial application of enzymes for
the manufacturing of chemical compounds. It is one of the
cornerstones for green and sustainable chemistry because
enzymes are by nature biodegradable, biocompatible, and easily
renewable.1 Despite being widespread in current industries,
most biocatalysts are based on naturally occurring enzymes
that, despite their variety, cover only a narrow spectrum of the
needs of chemical industries.
During the past century, homogeneous catalysis has been the

most prolific chemical field in discovering new chemical
reactivities. The award of two recent Nobel Prizes of Chemistry
(Chauvin, Grubbs, and Schrock in 2005; Heck, Negishi, and
Suzuki in 2010) appears particularly illustrative. However, the
transition metal complexes that sustain homogeneous catalysis
are in their majority functional under nonenvironmentally
friendly conditions, which include apolar solvents and low or
high temperatures, among others. Moreover, control over
substrate and regio- and enantiospecificities is generally
challenging in these complexes; conversely, they are properties
inherent to enzymatic activities.
With one-third of naturally occurring biocatalysts containing

metal ions, metalloenzymes have been the focus of attention of
enzyme designers. One possible framework consists of
mutating residues that coordinate the metal in the native
biomolecule or simply switch the metal by another. Such
approaches have led to interesting outcomes in recent years,
although modulating the activity of these scaffolds resides

mainly in the biochemical space afforded by the 20 amino acids
available in Nature.2−5

Another framework consists of physically merging homoge-
neous catalysts within a biomolecular host. Conceptually
mimicking natural hemoenzymes, this strategy is increasingly
applied to the development of biocatalysts absent from the
biological realm.6 In the resulting hybrids, also called artificial
metalloenzymes, the cofactor (synthetic in this case) provides
most of the catalytic specificity of the system. The protein
environment protects the homogeneous catalyst from the
solvent and generates an asymmetric second coordination
sphere that dictates substrate, regio- and enantioselectivities,
and specificities (Figure 1). Today, numerous systems
developed using this concept have already been reported and
include reactivities such as hydration of ketone,7 transfer
hydrogenation,8 and sulfoxidation.9 Strategies used to incorpo-
rate the cofactor inside the protein include pure host−guest
interactions, “Trojan horse” insertion in which the cofactor is
covalently bound to the natural ligand of a protein, or covalent
anchoring in which peripheral substitutents of the organo-
metallic catalyst chemically bind to the host.10 A nonexhaustive
list of artificial metalloenzymes with their catalytic activities can
be found in Table 1.
The successful development of artificial metalloenzymes

stands on the quality of the molecular partnership between
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substrate, organometallic and biological partners in terms of
binding and catalytic control.11 The actual strategies for their
design are time- and resource-consuming and consist mostly of
trial-and-error procedures. In general, the main steps involved
in the process consist of (1) the identification (by biochemical
intuition of the researchers) of one possible protein scaffold
able to bind a given homogeneous catalyst, (2) experimental
binding assays of the artificial cofactor in this particular host,
(3) testing of the catalytic activity for a prototypical substrate,
and (4) optimization of the initial hit toward catalytic
preferences.7,12−20

Molecular information is fundamental in all aspects of the
process. However, structural knowledge provided by ap-
proaches such as X-ray or NMR are rather scarce for artificial
metalloenzymes. These techniques generally fail because the
complementarity between subsystems is not optimal especially
when dealing with the first candidates of these systems. The
interaction among the three partners has not suffered
evolutionary pressures, affinity constants are generally low,
and substantial protein engineering is needed to stabilize the
structure of the hybrid system. Molecular modeling offers an
interesting alternative to reach atomic details on the mechanism
of artificial metalloenzymes and help in their design; however,
the development of synthetic enzymes through in silico
approaches is still in its infancy, and only a few attempts

have been performed on the particular case of artificial
metalloenzymes.
This manuscript aims to underline the particularities of

artificial metalloenzymes in the area of in-silico-based enzyme
design; give an overview of the strategies we have been
empowering in the recent years to establish an efficient
framework in this field as well as their consequent results; and
finally, to focus on what we believed should be the future of
modeling-based artificial metalloenzymes. It is a Perspective
that intends to motivate computational chemists to consider
artificial metalloenzymes as an interesting (but challenging)
target as well as present to experimentalists how the variety of
computational tools could be relevant for their designs.

A Brief Overview on Molecular Modeling Tools.
Molecular modeling is now widespread at the interface between
chemistry and biology, with models increasingly accurate, but
molecular modeling is also a general term for defining a series
of computational methods based on physical models with
different degrees of accuracy and computational needs.
Methods based on force field approaches, also called molecular
mechanics (MM), allow vast geometrical samplings because of
the relatively low ratio between the number of atoms and the
computational cost. MM approaches are used mainly to study
systems of large dimensionality (i.e., an entire protein in a
solvated medium) and allow the exploration of large conforma-
tional spaces. Generally combined with deterministic (i.e.,

Figure 1. Schematic representation of the process of designing an artificial metalloenzyme. Homogenous catalysts (top left) and a protein host
(bottom left) with sufficient vacant sites (solid blue blobs) are merged to provide artificial metalloenzymes (right onside). Their activity is driven for
the first coordination sphere of the metal (blue sphere) and substrate (blue stick atoms) binding and orientation defined by the second coordination
sphere environment (dark blue mesh sphere).

Table 1. A List of Artificial Metalloenzymes and Their Catalytic Activities

biomolecular scaffold transition metal organic cofactor catalytic activity substrate enantioselectivity, % ee ref

NikA transport
protein

iron(III) organic ligand L1 oxidation sulfides 10 13

LmrR copper(II) phenanthroline syn hydration ketones 84 ? 14
phenanthroline Diels−Alder reaction azachalcone >97 + 15

bovine β-
lactoglobulin

rhodium(III) fatty acid derivatives hydrogenation trifluoroacetophenone 26 R 16

β-helical
bionanotube

scandium(III) bipyridine, Ser, Thr epoxide ring-opening
reaction

cis-stilbene oxide 17 R 17

streptavidin mutants osmium(VIII) quinidine or quinine
derivatives

asymmetric
dihydroxylation

olefins 95 R 18

iridium(III) biotinilated complex hydrogenation cyclic imines 96, 78 RS 8
DNA copper(II) phenanthroline syn hydration enones 72 R 19
DNA copper(II) DNA intercalating moiety Diels−Alder reaction dienophiles 90 exo 20
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molecular dynamics) or stochastic (i.e., Monte Carlo) search
algorithms, MM allows the study of changes in the shape of the
molecule associated with their motions, extraction of statistical
thermodynamics values, or handling of the prediction of the
structure of large databases of the compounds, among others.
When dealing with the interaction between partners, the
additional degrees of freedom associated with translation and
rotation increase substantially the geometrical space to explore.
In these cases, a common solution consists of using simplified
force fields centered on noncovalent terms (called scoring
functions) and reducing the number of degrees explored during
the conformational search (i.e., all the degrees of freedom of
the ligand are considered, but a reduced number of amino acids
or, eventually, collective motions are allowed to move during
the docking process). Protein−ligand dockings, which aim at
predicting the structure of the complexes formed between small
molecules and proteins, are based on these premises. In any
case, only very specific and nonstandardized MM approaches
are able to predict fine electronic effects.21,22

Computational methods based on quantum mechanics
(QM) accurately reproduce the nature of the electronic
properties of the molecules and allow simulating changes in
their chemical state. QM approaches are used for very different
molecular problems, including spectroscopic and photoelec-
tronic processes and any system in which its coordination or
the covalent linkages change during a chemical process. A vast
ensemble of QM methods is accessible nowadays. It is likely
that those with the wider number of applications are based on
the density functional theory (DFT). These methods allow the
insertion of fine electronic effects (correlation) for a relatively
low additional cost over the typical Hartree−Fock calculations
and are particularly relevant in fields such as organometallics.
Despite their success, DFT techniques are based on a series of
approximations that could substantially limit the reliability of
their results (i.e., dealing with changes in spin states of a
transition metal is still a challenging task).23,24 The quest for
the best DFT method is a vivid field of research, and still today,
DFT capabilities seem system-dependent.25 Whatever their
ground, though, QM approaches are counterbalanced by
expansive computational costs that do not allow sampling of
large-dimensional problems.
Approaches that combine several methodologies together are

increasingly applied in molecular sciences to overcome the
limitations of individual methodologies. Generally referred to as
multiscale, integrative, or hierarchical methods, their potential
has already been widely recognized, including by the Nobel
Prize in chemistry awarded to Karplus, Warshel, and Levitt in
2013 “for the development of multiscale models for complex
chemical systems”. Prototypical multiscale approaches are the
hybrid quantum mechanics/molecular mechanics (QM/MM)
methods, which considers part of the molecule under a
quantum mechanical framework and the remaining part under a
molecular mechanics approximation. QM/MM methods are
now legion and key in the simulation of biomolecular systems.
They differ in the algorithms used in each subset of atoms and
how the information is transferred from one to another.26

Major breakthroughs in metalloenzymes have been reached
with these methodologies in decoding enzymatic mecha-
nisms.27−31

Other combinations are frequent in biosimulation either
under successive steps of different methods or integrated under
a unique protocol. Focusing on those related to the study of
enzymatic systems, some bridge molecular dynamics and QM/

MM calculations. This combination is particularly interesting
when an enzyme−substrate complex is relatively well-defined
(for example, from an X-ray structure obtained with a substrate
analogue) and is aimed to improve the quality of the catalytic
path explored under the QM/MM energetic landscape.32

However, when more complex binding processes need to be
modeled, protocols integrating protein−ligand dockings are
necessary. Although such combinations are less frequent in the
modeling of enzymatic reactions, their use has been particularly
relevant in several recent studies, including those related to the
study of the reactivity of cytochromes P450s 3A4,33 the change
of specificity of cytochrome P450 2D6,34 the elucidation of the
catalytic mechanism of Trametopsis cervina lignin peroxidase,35

or the promiscuous activity of human carbonic anhydrase
against cyanic acid.36 In all of them, the dockings are used,
alone or in combination with MD runs, to provide physically
sound complexes between the substrate and the enzyme prior
to catalysis.

In-Silico-Based Enzyme Design. Different ways of
developing new enzymatic activities are under the scrutiny of
designers. Their differences arise from the degree of molecular
diversity involved in the biomolecular scaffolds and include the
engineering of a few amino acids in the active site, development
of catalytically active peptides, or the redesign of a pre-existing
scaffold.37 Computation has been increasingly involved in
several of these strategies. We here focus on computer-based
designs in which conceptual frameworks best overlap with
those that could lead to artificial metalloenzymes.
De novo design of artificial enzymes consists of identifying a

protein scaffold and its consequent mutations to catalyze a
nonnatural reaction on a given substrate. The combinatorial
space to reach an active scaffold is tremendous and not yet
achievable by experimental means. Part of de novo enzymes are
based on relatively small peptides that could self-assemble.
Systems with those dimensions confine the search for activity
into a sequential space easier (but still challenging) to handle
with respect to large folded proteins.38−40 For designs
considering larger folds, computation is more frequently
required.
The most established procedures for computer aided de

novo design of artificial enzymes stand on hypothetical
transition state structures of a nonnatural reaction that could
be embedded in a protein medium. The identification of such
geometry is often performed by quantum mechanical
calculations on a minimalist active site, which includes the
substrate and a series of functional groups representing side
chain of amino acids that could stabilize its orientation and
participate in the reaction. These cluster models, also referred
to as theozymes under the definition of Houk and co-workers,41

are used as starting points for posterior search algorithms under
an explicit protein environment.
Mayo et al. were among the first to generate a novel proteic

scaffold from in silico approaches and reached a synthetic ββα
motif designed by screening 1.9 × 1027 possible amino acid
sequences.42 Pursuing their efforts, they computationally
identified mutations in the 108-residue Escherichia coli
thioredoxin, leading to a “protozyme” able to catalyze the
histidine-mediated nucleophilic hydrolysis of p-nitrophenyl
acetate into p-nitrophenol and acetate.43 Subsequently, Mayo
and co-workers implemented a new method to place the
substrate within the active site of the protein while the
designing algorithm is exploring the conformational and
chemical space.44 In their more recent successes, they iteratively
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execute computational simulations (best designing algorithm
and MD simulations) with X-ray crystallography to obtain one
of the best Kemp eliminases so far reported (Kcat/Km of 430
M−1 s−1 rate after three iterations).45

The Baker laboratory is another clear example of success in
de novo design of artificial enzymes by in silico approaches
using a procedure that combines rational design and directed
evolution.46,47 Briefly, their methodology accounts for an
extensive search of pre-existing high-resolution protein
structures that could accommodate the transition state
structure using the RosettaMatch algorithm.48 A scaffold is
considered a match if it satisfies that all the amino acid side
chains of the theozyme that can be placed on the protein
scaffold. Each match is then optimized using the RosettaDesign
methodology for proteins and small molecules.49,50 Except for
catalytic residues of the theozyme, all the remaining amino
acids in the vicinity are redesigned so that the final cavity has
the maximum shape complementarity with the modeled
transition state. All the resulting structures are then screened
for compatibility with substrate/product binding and ranked
according to the catalytic geometry and the computed
transition state binding energy. This way, a handful of different
putative new enzymes are selected for experimental character-
ization. Those that present the final activity will undergo a
series of directed evolution steps for further optimization.
Computational involvements in manipulating enzymes are

limited not only to de novo designs but also to bioengineering
processes, some of them relevant for the present work. For
enzymes with proven reactivity, computation can be used to
rationalize their mechanism, improve it, or ultimately reorient
their activity. An increasing number of studies with this
objective have appeared in the literature over the past decade.
Both pure quantum mechanical on large models of the active
site51 and hybrid QM/MM calculations30,35,52,53 are used to
this end.
Artificial metalloenzymes constructed by the insertion of

homogeneous catalysts into protein have thus far received very
little attention from computation.52,54−56 Conceptually, their
design stands on the same premises as pure organic systems:
the modeling should identify transition state structures
stabilized under a biocompatible host. However, these
composites work because of a complementarity of the three
different molecular entities and not only on protein−substrate
recognition and activation. In this case, molecular modeling
needs to handle the cofactor−host−substrate triad as best it
can. The need in dealing with metal-mediated recognition
processes, the effects they could induce on the structure of the
host, and the reactivity of the final composite provide extra
complexity for molecular modeling.
Our Computational Framework for the Modeling of

Artificial Metalloenzymes. In the field of artificial metal-
loenzymes, molecular modeling needs to address processes
involving large conformational sampling on one side and fine
electronic effects on the other. The former are related to the
binding of the artificial cofactor in the host and the orientation
of the substrate in an efficient manner for the reaction to
proceed. In principle, those steps can be achieved by protein−
ligand dockings. The latter consists of events related to the
identification of stable geometries of the isolated cofactor, the
changes in its coordination sphere upon binding, and the
characterization of low-energy reactive paths with the emphasis
on identifying transition states structures. Pure QM and hybrid

QM/MM calculations represent the best candidates for leading
this part of the modeling.
In recent years, the objective of our group has been to

generate computational protocols efficient for the design of
artificial metalloenzymes. As a framework, we decided to use
standardized (or lowly tuned) computational chemistry
methods as well as multiscale approaches as a function of the
problem presented. Regarding protein−ligand dockings, we
decided to use the commercial software GOLD, which is one of
the few that contain metal parameters, although at the
beginning of our work, none were designed for metal-
containing ligands.57,58 It also affords flexible schemes for
both receptors and ligands, which we applied in most of our
calculations. Quantum simulations are performed using the
Gaussian package (Gaussian09)59 for both pure DFT
calculations and QM/MM calculations. The latter are
performed using the ONIOM approach using mechanical and
electronic embedding.60 Finally, structural modeling and
statistics are performed in the UCSF Chimera61 platform and
include, nonexclusively, the exploration of rotameric con-
formation of amino acids62 or the clustering of large sets of
geometries using the NMRClust approach.63 To ease our
development of integrated approaches, we also developed a
series of interfaces written in Python into the UCSF Chimera
environment, which allows rapid input/output exchanges
between the different methodologies we use.

1. BINDING OF ORGANOMETALLIC COMPOUNDS TO
PROTEIN: THE QUEST FOR RESTING STATE
MODELS

The design of artificial metalloenzymes relies, on a first
instance, on the identification of structural matches between a
biomolecule and a homogeneous catalyst. Only efficient
complementarities should lead to a precatalytic state. The
availability of 3D models of protein−artificial cofactor
complexes is therefore fundamental at this stage. Although
protein−ligand dockings represent one of the cornerstones in
medicinal chemistry and drug design projects, little attention
has been paid to the interaction of organometallic compounds
with proteins. Indeed, only a small amount of drug candidates
contain transition metal ions. However, metals are considered
in several of these techniques for their presence in the active
site of metaloproteins and how they influence the binding of
organic drugs. In this case, different strategies are available to
introduce metal−ligand interactions in the calculation of the
energy, ranging from simple electrostatics (hydrogen-bond-
donor-like function)64 to coordination rules.58,65,66

For the interaction of organometallic entities with proteins,
an accurate computational prediction has not yet been
standardized. On the basis of bioinorganic considerations,
efficient modeling should take into account (1) changes of the
electronic state and geometry of the first coordination sphere of
the metal upon binding, (2) geometrical changes on the entire
cofactor, and (3) possible induced effects on the protein
scaffold. Dealing with all these variables is beyond the scope of
standard protein−ligand docking software, and different levels
of approximation are mandatory.
A first case scenario consists of the situation in which no

ligand exchanges occur on the metal when migrating from
solution to its cavity in the host. These so-called “inert
scaffold”67 interactions imply that only subtle rearrangements
of the first coordination sphere of the metal happen upon
binding but that its overall geometry is little affected. From a
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computational point of view, such systems could be simulated
by dockings in which the close vicinity of the metal in the
ligand remains rigid and the rest of the scaffold is optimized
during the conformational search.
On the basis of this hypothesis, we recently showed that

protein−ligand docking software behaves for inert scaffolds as
well as it does for organic ligands. Limited by the reduced
number of crystal structures of organometallics bound to
protein available in the Protein Data Bank,68 we performed a
benchmark on structures corresponding to metal-containing
inhibitors bound to their kinase targets and designed at
Meggers’ Laboratory.67 Using GOLD as the method of choice,
we tested different flexible schemes and scoring functions. The
results were of very good quality. First, excellent structural
matching between calculated low-energy structures and
experimental complexes is observed. Between 75 and 94% of
the theoretical complexes presented an RMSD lower than 2.5 Å
from their experimental counterparts. The scores obtained were
also of good quality, with correlations between experiment and
theory reaching R2 values up to 0.8 for those scoring functions
that best behave. Of the scoring functions available in Gold,
ChemScore57 appears the most robust for both structural and
energetic predictions. Outliers were encountered only when the
geometry of the ligand bound to the metal differs substantially
between the isolated conditions and the proteic complexes,
something happening rarely in this set but that illustrates that
the improvement of how dockings can explore the conforma-
tional changes related to the first coordination sphere of the
metal or the coupling of dockings with accurate electronic
methods such as QM/MM would represent a major step
forward in those predictions.69

The prediction of the binding of synthetic cofactors to
proteins under an inert interaction represents an initial step
along the quest of 3D models of the resting state of artificial
metalloenzymes. Despite an apparent simplicity, such approx-
imation still provides crucial information on the most
important features in defining protein−ligand binding: shape,
hydrophobic and hydrogen bonding complementarity. Such
information is extremely valuable when dealing with a first
generation of an artificial enzyme for which structural
information is missing. As such, dockings performed under

this assumption have been one of the cornerstones in our
collaboration with Mahy and co-workers, whose main objective
is the development of artificial oxidases, more particularly,
peroxidases and cytochromes P450.70

The first of our studies allows rationalization of the difference
in activity of iron(III)-tetra-α4-ortho-carboxyphenylporphyrin
(Fe(ToCPP)) and iron(III)-tetra-para-carboxyphenylporphyrin
(Fe(TpCPP)) systems embedded into xylanase A (Xln10A)
from Streptomyces lividans. Xln10A is a glycoside hydrolase that
hydrolyzes β-1,4 bonds in the main chain of xylan and is
available at low cost and in large quantities.71 Of the most
important results, the protein−ligand dockings showed that
Fe(TpCPP) enters deeper into the large Xln10A cleft than its
Fe(ToCpp) counterpart. This better complementarity is due to
a major part of the porphyrin ring anchored into the binding
site as well as a substantial hydrogen-bonding network between
the peripheral carboxylates of consecutive aromatic substituents
and two polar patches of the receptor (Figure 2A). Moreover,
the calculated Fe(TpCPP)-Xln10A complex shows the cofactor
with one of its faces slightly packed on the surface of the
binding side protein and the other accessible to the solvent.
This orientation is in agreement with the experimental
observation that only one imidazole could coordinate the
iron of the porphyrin. Similar approaches on the same target
also concluded that a sulfoxinated tetra-para-phenylporphyrin
shows different binding modes with regard to its carboxylic
counterparts with wider variability in interacting with polar
patches of the receptor.72 A final study with Xln10A as a
receptor for porphyrin complexes showed that metallic Schiff
base cofactors displayed very limited complementarities to the
Xln10A binding site but that Mn(TpCPP) afforded a cavity vast
enough to accommodate a substrate for the epoxidation of the
series of aromatic styrenes. Interestingly, one of the residues of
the receptor (Arg139) is identified to control the access of the
substrates.73

More recently, we focused on another receptor: an
engineered mutant of neocarzinostatin (NCS). NCS is a 113
amino acid chromoprotein secreted by Streptomyces that binds a
nine-membered enediyne “chromophore” responsible for the
cytotoxic and antibiotic activities of the protein−ligand
complex.74 The NCS 3.24 mutant allows the binding of two

Figure 2. General view of different artificial metalloenzymes for which complementarity between host and cofactor were studied by protein ligand
docking: (A) supramolecular interaction between iron porphyrin (concretely Fe(III)TCPP) and the xylanases 10A; (B) NCS bound with a Trojan
horse testosterone−porphyrin derivative.
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testosterone molecules in its hydrophobic binding site in place
of the natural chromophore. Using a so-called “Trojan horse”
strategy, Mahy and co-workers synthesized an iron(III)−
porphyrin−testosterone derivative able to bind to NCS-3.24.
The resulting hybrid is able to catalyze the chemoselective and
slightly enantioselective (ee = 13%) sulfoxidation of thioanisole
by H2O2.
To increase the yield and the enantioselectivity of the

construct, protein−ligand dockings were applied to look for
improvement of the interaction between the cofactor and the
protein. The molecular modeling showed that the porphyrin
macrocycle fits perfectly into the protein binding site and is well
sandwiched between the two subdomains of the protein
(Figure 2B). However, the metal ion remains exposed to the
solvent, which could explain the moderate enantioselectivity
observed. The study also gave hints on possible improvements
in the “Trojan horse” strategy because the artificial cofactor has
filled up the two testosterone sites entirely and displaced its
conjugated scavenger out to the solvent. Smaller cofactors are
therefore expected to better fit inside the binding site of the
enzyme and provide a wider asymmetric environment for
enantioselective reactions.75,76 A final scaffold we studied is a
family of porphyrin-binding catalytic antibodies that are able to
perform peroxidase activities. In conjunction with X-ray
structures that were not conclusive on the geometry of the
cofactor in the hapten recognition site, we could qualitatively
rationalize both activity and binding.77

Although the binding of organometallics to their host in an
inert fashion is frequent with drug compounds, for homoge-
neous catalysts, this hypothesis is valuable only as a “first shoot”
for structural knowledge. In a wider context, results obtained
under this assumption have to be nuanced. On one side, the
absence of coordination changes during binding needs to be
compared with experimental data, mainly spectroscopic, to
validate such an approximation. Moreover, this approximation
is interesting mainly for resting state structures. Indeed, either
prior to or during the catalysis, one or several groups bound to
the metal are likely to be displaced from its isolated situation in
solvent to its binding to the protein cavity. When disposing of
the clear idea on which groups could leave the cofactor (i.e.,
labile water on the top of the iron in a heme like complex), a
possible strategy consists of mixing dockings and quantum-
based approaches to identify correct resting states of the
artificial metalloenzymes.

To this end, we developed an integrative procedure that
combines docking, structural statistics, and quantum mechan-
ical-based calculations (Figure 3). In this process, stable
structures of the isolated cofactor obtained either from pure
quantum mechanical calculations or from a database of small
molecules (considering, if necessary, spin and oxidation states)
are initially docked into the receptor cavity.
During the docking, we simulate the formation of possible

coordination bonds between the metal and atoms of the
protein by removing the most likely leaving group from its first
coordination sphere and using a pseudometal atom type. In
Gold, our program of choice, a hydrogen-like function is
located at the vacant coordination site with directions that
respect the coordination rules of the metal (i.e., octahedral,
square planar, etc.) and can interact with Lewis basis atoms.
The resulting binding modes are further analyzed to identify
additional residues that could reach the metal ion. On the basis
of statistics of metaloprotein three-dimensional structures, any
residue with the Cα under the cut-off of 9 Å from the metal
could display one of its rotameric states coordinating the ion.
Once those amino acids are identified, the final step along the
process consists of generating the different coordination modes
of a given docking solution by rotameric refinement and
pursuing with QM/MM calculations of the resulting complex.
QM/MM calculations are generated with an initial minimiza-
tion constraining the coordination bond to a reasonable
distance and subsequently releasing the constraint to avoid
artifacts along the optimization. The potential energies of the
final models are compared together, and those with the lowest
energy are compared and discussed and could eventually be
used for further designs.
We tested this approach for the first time in 2010 on the

structure of an artificial metalloenzyme obtained by the
substitution of the heme by a Fe(Schiff base) salophen in
Corynebacterium diphtheria heme oxygenase (cdHO).78 cdHO is
a small all-α enzyme that performs the first step of the oxidation
of the heme.54 The Fe(Schiff base)−cdHO resulted as a
superoxidase able to work thanks to successive reductions
performed by the electron partner of the natural enzyme.
Importantly, the crystal structure of Fe(Schiff base)-cdHO
shows major differences from other salophen and heme-bound
enzymes (Scheme 1 and Figure 4A).
First, the iron displays an octahedral configuration with a

distorted cofactor and diverges from the planar geometry

Figure 3. Steps of our integrative procedure combining docking, structural statistics and quantum mechanical based calculations.
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observed with salophen and porphyrin systems (Figure 4A). In
this geometry, one of the oxygen atoms of the catalyst migrated
from the equatorial position to the axial position. Second, two
residues coordinate the iron, the His20 that occupies one of the
axial positions, and the glutamate 24 that fulfills the fourth
position of the equatorial plane. This geometry does not follow
the general trend of heme-bound enzymes, including the
natural substrate-bound heme oxygenases. In those systems, the
iron coordinates the four atoms of the macrocycle in equatorial
position and binds His20 as a unique protein ligand at the
proximal axial site. Moreover, the resting state of hemoenzymes
remains either square planar or octahedral by the binding of an
additional labile ligand to the metal, generally a water molecule.
Finally, the cdHO structure also presents a displacement of the
helix A, to which both His20 and Glu24 are bound, that has
been unreported before in X-ray structures of heme oxygenases.
As a whole, the geometry presents all the molecular features

that challenge computational prediction of the binding of
organometallics to protein.
Our study consisted of a blank experiment in which we

started with a set of structures of the heme oxygenase (none of
them corresponding to the crystal structure of Fe(Schiff base)-
cdHO) and the chemical structure of the cofactor. Applying the
protocol described previously, we obtained two low-energy
structures: one with excellent structural similarity to the crystal
structure of the artificial metalloenzyme, the second with a
square pyramidal geometry reminiscent of the heme enzymes
and in which glutamate 24 was eliminated from the first
coordination of the metal.54

The first structure clearly illustrates that the combination of
protein−ligand dockings and QM/MM approaches would lead
to excellent predictions for active binding of homogeneous
catalysts to a protein host, even with changes of the
coordination sphere of the metal. The second apparently
suggests a failure of the simulation in discriminating between
different binding modes but also that a possible equilibrium
between hexacoordinated and pentacoordinated geometries
exists in solution. The crystal structure snapshot could have
somehow trapped an intermediate out of the catalytic path of
the enzyme.
We further studied this aspect by investigating the transition

between both structures considering all the spin and oxidation
states conceivable in the initiation step of the catalysis by QM/
MM calculations. We showed that the X-ray structure
corresponds to the real resting state of the enzyme in Fe(III)
state, and the square pyramidal one corresponds to the reduced
Fe(II) form of the enzyme. Energy decomposition using
different QM/MM partitions allowed identifying that the first
coordination sphere of the metal is the most important factor in
dictating the geometry of the final complex. In addition, this
study clearly demonstrated that the transition between both
structures is energetically feasible only when the reduction has
occurred, hence providing additional evidence of the divergence
in the mechanism of action of artificial and natural heme-like
enzymes. The transition state vector also shows that the
reorganization of the cofactor, the displacement of the
glutamate out of the first coordination sphere of the metal
and the entire rearrangement of the helix A, are intrinsically
related.79

More recently, we applied the same procedure to artificial
imine reductases designed by Ward and co-workers and
resulting from the incorporation of a biotinylated Cp*Ir
Noyori’s-like catalyst (Cp* = C5Me5−) within different
mutants of the homotetrameric streptavidin (Sav) (referred
to as Cp*Ir(Biot-p-L)Cl] ⊂ Sav). Mutants at position S112
reveal major differences in both the Ir/streptavidin ratio and
the enantioselectivity for the production of salsolidine. For
[Cp*Ir(Biot-p-L)Cl] ⊂ S112A Sav, the reaction rate and the
enantioselectivity (which reach up to 96% ee for (R)-
salsolidine) decrease upon saturating all biotin binding sites,
whereas for [Cp*Ir(Biot-p-L)Cl] ⊂ S112K Sav, the rate and
the ee remain almost constant as a function of the ratio Ir/
streptavidin (ee near 78% for (S)-salsolidine). Our docking
complemented the X-ray structures that only partially resolve
the location and the orientation of the cofactor into the cavity
of the hosts. In collaboration with Ward’s group, our
calculations verify that the S112A and S112K Sav mutants
prefer binding the SIr and RIr enantiomeric forms of the
cofactor, respectively, a phenomenon not observed on natural
enzymes binding organometallic cofactors. Moreover, it shows

Scheme 1. General Geometries of X-ray Geometry of the
Fe(III)Schiff Base·cdHO System (left) and Resting States of
Naturally Occurring Hemoenzymes (right)

Figure 4. Examples of artificial metalloenzymes in which the binding
of the cofactor occurs under an active coordination sphere: (A)
predicted geometries of the Fe(III)(Schiff Base)-cdHO resting state
and (B) structure of the binding site of the [Cp*Ir(Biot-p-L)Cl] ⊂
S112K Sav system with a coordinated lysine 112 to the iridium
complex, as predicted by the docking procedure.
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that the binding in the S112K mutant could be stabilized by a
coordination of the metal with the Nε atom of lysine 112,
forming a resting state structure stabilizing the orientation of
the cofactor and differing from those of the S112A mutant in
which no additional coordination is observed between the
metal and the protein (Figure 4B).80

2. MODELING THE CATALYTIC ACTIVITY OF
ARTIFICIAL METALLOENZYMES

The binding of the synthetic cofactor is part of the molecular
events that condition the design of artificial metalozymes, but
their activity can be understood only from the binding of the
substrate and its activation. Protein−ligand dockings on its own
can provide some relevant insights by allowing the
identification of substrate binding modes that are catalytically
consistent.81−83

The composite resulting from the insertion of Mn(III)-meso-
tetrakis(p-carboxyphenyl)porphyrin (Mn(TpCPP)) into
Xln10A displays epoxidative activity on a series of styrenes.
Subtle enantioselective preferences toward S products are
observed in most substrate but the most remarkable ee is
observed with p-methoxystyrene, featuring a stereoselectivity of
80% in favor of the R isomer. The docking of the different
substrates into the binding site of a model of the artificial
metalloenzyme previously generated showed that the predicted
orientations of the substrate in the active site of Mn(TpCPP)-
Xln10A consistent with the formation of S-epoxide are slightly
more stable than those for R epoxide ones. However, for p-
methoxystyrene, the trend is inverted, with orientations
consistent with R epoxide formation being more stable. Such
inversion is associated with an additional H-bond between
tyrosine 172 and the oxygen atom of the p-methoxy substituent
(Figure 5).73

Protein−ligand dockings are not able to identify true
transition state structures along an enzymatic reaction. They
are limited to providing substrate binding modes that are to be
contextualized in terms of prereactive orientations. The
characterization of real, true transition state structures can be
performed only by means of QM/MM calculations. However,
for most artificial metalloenzymes, this task cannot be
dissociated to a wide conformational sampling because little

molecular information is available for the location and
orientation of the cofactor and its interaction with the substrate.
We developed a protocol combining docking, QM, and QM/

MM calculations in which both substrate and cofactor are taken
into account during the geometrical search. This methodology,
reminiscent of the work of Houk, Mayo, and Baker, consists of
three successive steps: (1) Study of the catalytic mechanism in
a cluster model of the enzyme by DFT calculations. The
reduced model consists generally of the cofactor, the substrate,
and amino acids likely to interact on the reaction center. (2)
Docking of the geometries of the transition state structures
obtained in step 1 into the binding site of the artificial
metalloenzyme. Those pseudotransition states are generated
while imposing few geometry variables extracted from the
structure of the transition state models. (3) Refinement by
QM/MM calculations of the pseudotransition state structures
obtained in step 2 and identification of true transition state
structures on the full potential energy surface. From this step,
the lowest energy paths can be identified and compared with
experiment. At each step along the process, the models with the
substantially highest energies are neglected for the next step
forward. A scheme of the protocol employed, showing the
sequential steps and its application to an example, is depicted in
Figure 6.
A first application of this methodology has been the study of

the catalytic mechanism of the artificial [Cp*Ir(Biot-p-L)Cl] ⊂
S112A transfer hydrogenase mutant mentioned earlier.8

Although the mechanism of reduction of ketones by
Noyori’s-like complexes is now widely accepted, the one
leading to the reduction of imine has not yet reached a
consensus. Although the metal center is well-known to provide
the transfer of hydride, there is still discussion on the source of
the proton. As a consequence, our model system considers
several mechanistic hypotheses for this step, including the
organometallic moiety itself, a hydronium from the medium, or
a positively charged lysine that the active site could contain.
Calculations were performed for processes leading to R and S
chiral reduced imine.
The first step of our protocol allowed discarding mechanisms

in which hydride and a proton are transferred from the
homogeneous catalysts. All of those pathways are systematically
15 kcal mol−1 higher than any other ones, a magnitude difficult
to imagine that a protein scaffold could counterbalance. After
docking the remaining pseudotransition state structures in the
streptavidine vestibule, QM/MM refinements led to the
identification of eight different reaction paths. Those involving
proton transfer from the lysine residues located in the binding
site are the less favored. The lowest-energy mechanism implies
the transfer of the hydride on the substrate that was protonated
in solution prior its access to the SAV112A site. The lowest-
energy R and S paths clearly indicate preference toward the
formation of the R product. The corresponding ee calculated
on the difference in energy of the transition states reaches 80%,
a magnitude in good agreement with the 98% reported
experimentally. Interestingly, the geometries of the predicted
transition state structures of proR and proS mechanisms clearly
show a major drift of the cofactor and the substrate into the
SAV cavity, something absent from natural hemoenzymes in
which the location of the cofactor is well stabilized (Figure 7).
The relevance of a correct identification of the location of the

cofactor is consistent with the first QM/MM study reported on
an artificial metalloenzyme by Morokuma et al.52 They analyzed
the reaction mechanism of the polymerization of phenyl-

Figure 5. Predicted low-energy complexes of the p-methoxystyrene
inside the cavity of the Mn(TpCPP))-Xyl10A model, corresponding to
the orientation of the substrate consistent with the formation of the R
epoxide product.
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acetylene by an artificial metalloenzyme developed by Ueno
and co-workers. This biometallic hybrid was obtained through
the insertion of a [Rh(norbornadiene)Cl]2 catalyst inside a
horse L-chain apo-ferritin. After investigating different reaction
mechanisms, the authors were able to characterize the most
likely cavity in the apo-ferritin structure that could shelter the
inorganic cofactor and favor the polymerization reaction.

■ CONCLUSION AND PERSPECTIVE

The development of artificial metalloenzymes is becoming a
major field of investigation. To date, designers have based most
of their work on (bio)chemical intuitions, with limited
structural information. Molecular modeling can be useful in
this field, although dealing with all the energetic and structural
aspects that need to be considered represents a real tour de
force. Among them, metal-mediated recognition processes
involved in cofactor binding are fundamental but out of the
scope of current state-of-the-art protein−ligand docking
methodologies. Another fundamental aspect is to determine
three-dimensional models of catalytically active conformations
of the cofactor−substrate−receptor triad.

A few years ago and based on our experience on
organometallics, drug design, and bioinorganics, we embarked
on establishing and benchmarking procedures convenient for
artificial metalloenzyme design. The fruits of the first steps in
this venture are summarized in this manuscript. Here, we try to
show which approximation we had to contemplate, the
evolution of our approaches, the most relevant elements of
our achievements, and what accuracy is to be expected.
Regarding the binding of the homogeneous catalyst to a

protein, we validated standard protein−ligand docking
procedures in generating accurate 3D models if no chemical
changes of the first coordination sphere of the metal occur
upon binding. Although scoring functions and parameters to
deal specifically with metal ions in ligands still leave room for
improvement, calculations performed under this hypothesis are
extremely instructive. Such dockings are particularly relevant for
composites that represent the first line of candidates for
artificial metalloenzymes. This benchmark also suggests that
high-throughput virtual screening of large databases of
organometallics and proteins to detect novel frameworks is
achievable.

Figure 6. Schematic procedure for the identification of catalytic mechanism inside a proteic scaffold of artificial metalloenzymes considering the
uncertainty of the location of the cofactor (left) and its application to mechanistic study of an artificial transfer hydrogenase (right).

Figure 7. Calculated transition state structures of the lowest energy paths leading to the formation of R (left) and S (right) salsolidine.
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For the prediction of 3D models involving the modification
of the first coordination of the metal upon binding, we thought
that the best chances of success were with allying protein−
ligand docking with QM and QM/MM approaches. This
strategy allows reproducing complex processes and gives
highlights on major induced effects, such as the distortion of
the cofactor and large scale motions of the receptor, and
eventually complement crystallographic observations. However,
its success depends on hypothesizing which coordinated
ligand(s) leave(s) the cofactor and is (are) replaced by protein
residues. This is relatively straightforward for labile water
molecules in heme-like systems but still challenging for
organometallic compounds for which interaction with bio-
logical scaffolds are less documented. Generating multiple
coordination sphere candidates during the docking run is
therefore primordial for more advanced designs and a
methodological challenge we are now exploring.
Finally, we showed that bridging pure quantum mechanics

calculations on model systems, protein−ligand dockings, and
QM/MM calculations allow identification of true transition
state structures in artificial metalloenzymes. This approach is
efficient enough to characterize reaction paths even when the
location of the cofactor is uncertain. It also provides
information on fine structural events, such as those that
control the enantioselective profile of artificial metalloenzymes.
Importantly, this procedure is computationally far less
demanding than other deterministic protocols, such as those
performed with stirred molecular dynamics or metadynamics.
Although most of the tools for computer-aided design of

artificial metalloenzymes are now part of the toolbox of
computational chemists, their success in this field will also be
dependent on our ability to deal with the fine-tuning between
simulation of binding processes and catalytic mechanisms. In
particular, better sampling protein−ligand docking techniques
are of the most important aspects to incorporate into an
integrative framework. As such, methods than allow fast
introduction of large-scale (collective) motions84 and enhanced
sampling in docking will be a major asset.85

With few years dedicated to this field, we believe that our
experience illustrates the potential of molecular modeling tools
for the rationalization of the reactivity of existing artificial
metalloenzymes. Decoding their molecular mechanism at the
atomic level first provides useful information for further
optimization steps (i.e., control over regio- and enantioselectiv-
ities and specificities) and also affords conceptual knowledge on
nonnatural bioinorganic interactions. With the lack of
molecular information on these composites, we hope this
could serve in the development of the entire field of artificial
metalloenzymes.
The challenge in the years ahead consists of expanding our

modeling framework so that computation could become an
interesting tool for design purposes. To reach such in silico
designs, focus should be given, among others, on strategies that
allow the identification of protein scaffolds that could host the
artificial cofactors and satisfy the chemical requirements for the
reactivity to occur as well as predict suitable redesign of the
protein−substrate−cofactor interface. To this end, combina-
tions and adaptations of the approaches described in this
manuscript with those already established in enzyme design are
among the most interesting. Still, the main barrier to overcome
consists of the simultaneous exploration of both the biological
(i.e., mutations of the protein scaffold) and chemical (i.e.,
nature of the cofactor and its substituents) spaces so that

calculations could ascertain the most promising complemen-
tarity of the protein−substrate−cofactor triad. In this, there is
no doubt that the integration of different methodologies will be
crucial to success.
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